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ABSTRACT

Since October 2013 a convective-scale weather prediction model has been used operationally to provide

short-term forecasts covering large parts of the Nordic region. The model is now operated by a bilateral

cooperative effort [Meteorological Cooperation onOperational Numerical Weather Prediction (MetCoOp)]

between the NorwegianMeteorological Institute and the SwedishMeteorological andHydrological Institute.

The core of the model is based on the convection-permitting Applications of Research to Operations at

Mesoscale (AROME) model developed by Météo-France. In this paper the specific modifications and up-

dates that have been made to suit advanced high-resolution weather forecasts over the Nordic regions are

described. This includesmodifications in the surface drag description, microphysics, snow assimilation, as well

as an update of the ecosystem and surface parameter description. Novel observation types are introduced in

the operational runs, including ground-based Global Navigation Satellite System (GNSS) observations and

radar reflectivity data from the Norwegian and Swedish radar networks. After almost two years’ worth of

experience with the AROME-MetCoOp model, the model’s sensitivities to the use of specific parameteri-

zation settings are characterized and the forecast skills demonstrating the benefit as compared with the global

European Centre for Medium-Range Weather Forecasts’ Integrated Forecasting System (ECMWF-IFS) are

evaluated. Furthermore, case studies are provided to demonstrate the ability of the model to capture extreme

precipitation and wind events.

1. Introduction

With the increasing resolution of operational numer-

ical weather prediction (NWP) models toward kilome-

ter scales, the direct simulation of small-scale features

like convective dynamics is approached. This advance-

ment provides weather services with the potential to

improve short-term weather forecasts of convective

events, which can have a severe impact on infrastructure

and society at large. However, the progress in model

resolution goes hand in hand with several challenges, for

example, physical parameterization schemes, proper

description of details in the surface forcing, and data

assimilation of high-resolution data (e.g., Sun 2005). In

addition, forecast evaluation becomes more complex

(e.g., Ebert 2008) and underlines the fact that the grid-

point value itself from a high-resolution model is not

necessarily the best end product.

In March 2014, the AROME-MetCoOp model, the

Meteorological Cooperation on Operational Numerical

Weather Prediction (MetCoOp) version of the Météo-
France Applications of Research to Operations at Me-

soscale (AROME)model (Seity et al. 2011), was put into

operation by a cooperative effort of the Norwegian and

Swedish meteorological services. MetCoOp, which is a

collaborative effort between the Swedish Meteorological

and Hydrological Institute (SMHI) and the Norwegian

Meteorological Institute (MET-Norway), is unique in

having two national weather services sharing operational

model simulation, 24/7 surveillance, infrastructure (in-

cluding computing resources), expertise, and model de-

velopment. At present, MetCoOp produces short-termCorresponding author e-mail: Malte Müller, maltem@met.no
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weather forecasts that are distributed and used in the

forecast production chains of both countries. AROME-

MetCoOp is a branch of the HIRLAM–ALADIN Re-

search on Mesoscale Operational NWP in Euromed

(HARMONIE) AROME model, version 38h1.2, which

has been developed within the framework of the High

Resolution LimitedAreaModel (HIRLAM) consortium

(http://www.hirlam.org), a research cooperation of 11

European meteorological institutes.

Weather forecasting over Scandinavia spans a wide

range of phenomena and scales and includes conti-

nental, maritime, and polar conditions. During sum-

mer, convective systems are common (in particular in

the southeast), while polar processes, including severe

polar lows, are frequently observed during winter (in

the northern parts). Both Norway and Sweden have

varying topography, complex coastlines, and gradients

in land use, which imply local variations in weather.

Thus, many aspects of weather forecasting in the Nor-

dic region (Norway, Sweden, Finland, and Denmark)

benefit from a better description of small-scale phe-

nomena and forcing; that is, the topography, coastline,

and land-use contrasts may steer temperature, wind,

and precipitation gradients. In addition, severe

weather, such as polar lows, is more likely to be simu-

lated with kilometer-scale resolution, as a result of the

improved representation of the smaller spatial scales of

high-latitude dynamics (Kristiansen et al. 2011).

The scope of this paper is to introduce and evaluate

the AROME-MetCoOp model after almost two years’

worth of operation. The paper is structured as follows.

Section 2 gives a brief description of the AROME-

MetCoOp model and its configuration. Surface and

upper-atmosphere data assimilation is outlined in sec-

tion 3. In section 4, an evaluation is presented to show

the general characteristics and added value of the

AROME-MetCoOp model compared with the global

European Centre for Medium-Range Weather Fore-

casts Integrated Forecasting System (ECMWF-IFS;

Bauer et al. 2013). Case studies of severe weather

events during the first operational year are described in

section 5. The last section presents a summary along

with future perspectives.

2. Model configuration and modifications

a. Model configuration

The AROME-MetCoOp model covers large parts of

the Nordic countries with a horizontal resolution of

2.5 km. More than half of its domain is over open water,

that is, the Atlantic Ocean, the North Sea, and the

Baltic Sea (Fig. 1). The horizontal grid (739 3 949 grid

points) is defined by a Lambert projection with the

center at 63.58N and 158E. The coupling zone in which

the AROME-MetCoOp model is relaxed toward the

large-scale coupling model is eight grid points wide

FIG. 1. Contoured land topography (elevation; m). (a) The entire model domain of the

AROME-MetCoOp. A subarea (southern Norway) is shown of the (b) AROME-MetCoOp

and (c) ECMWF-IFS topographies.
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(Davies 1976). In the vertical, the atmosphere is di-

vided into 65 layers by a mass-based, terrain-following

hybrid vertical discretization (Simmons and Burridge

1981). Near the ground, the first layer is at approxi-

mately 12.5-m height, and the vertical resolution de-

creases with height, with a discretization of 15–100m in

the lower 1 km of the atmosphere. The uppermost layer

is located at approximately 33 km.

The model operates with a 3-hourly update cycling,

where atmospheric and land surface variables are

updated. At every main cycle (0000, 0600, 1200, and

1800 UTC) a 66-h forecast is produced. For these main

cycles the cutoff time, the waiting time after the official

analysis for observations, is 1 h 15min. For the in-

termediate cycles (0300, 0900, 1500, and 2100 UTC), a

very short-term forecast of 3 h is produced and used as a

background field for the following main cycle. The cut-

off time for the intermediate cycles is 3 h 40min.

TheAROME-MetCoOpmodel is forced by ECMWF-

IFS at the lateral and upper boundaries. The ECMWF-

IFS model operates with a T1279 horizontal resolution

(approx 16-km grid size) and 137 vertical levels. Because

of the delayed availability of ECMWF-IFS forecasts, the

analysis times of the ECMWF-IFS forecasts, which are

used as boundaries, are 3 and 6h earlier than the actual

forecast for the intermediate and main forecast cycles,

respectively.

b. Modifications in the microphysical scheme

In the following we give a brief description of the

cloud microphysics scheme, where region-specific ad-

justments have been made. For a detailed description of

the model numerics and physics, we refer readers to

Seity et al. (2011) and references therein.

The cloud microphysics is based on a Kessler scheme

for the warm (liquid) processes whereas the cold pro-

cesses are parameterized by the three-class ice parame-

terization (ICE3) scheme. ICE3 includes three ice

species; cloud ice, snow, and graupel (Pinty and Jabouille

1998). More than 25 processes are parameterized inside

the scheme and most of them are interactions between

different species. Those processes are treated explicitly

and sequentially, and the result is dependent on the order

of the calculation of each process. Altogether six species

are used: vapor, cloud water, rain, cloud ice, snow, and

graupel. They are all advected horizontally by the semi-

Lagrangian scheme. The gravitational settling of non-

vapor water is parameterized by a sedimentation scheme,

which is designed to be both numerically stable and

computationally efficient. Subgrid condensation is ac-

counted for by a statistical subgrid condensation scheme.

The cloud fraction of a grid boxwith a nonsaturatedmean

of vapor is determined by the averaged departure of

saturation and of the variance of the departure from

saturation. This variance is diagnosed by the output from

the turbulence scheme.

The modifications of the ICE3 scheme for AROME-

MetCoOp are motivated by the following weaknesses

seen during the winter season:

d too quick decay of low clouds in cold conditions (e.g.,

2-m temperatures T2m from about 258 to 2108C),
which leads to too large longwave outgoing radiation

and thus too low T2m, and
d too much ice fog or low clouds in severe cold

conditions (T2m about 2158C or colder). There also

seems to be a slight overprediction of cirrus clouds.

This overprediction is present in all seasons.

The modifications include

d separating the fast liquid-phase processes from the

slower ice-phase processes,
d reducing the speed of the sublimation of ice

particles, and
d accounting for the fact that the optical thickness of ice-

phase clouds is less than the optical thickness of water-

or mixed-phase clouds.

These modifications reduce the negative bias ofT2m in

winter and improve the low-level cloudiness. A negative

side effect is that the occasions with fog increase and

become too frequent. The reason for this is that during

winter and spring the latent heat transport in the surface

scheme is too large and the sensible heat flux too low.

Without themodifications in themicrophysics, the effect

of this error in the surface scheme is partly compensated

by a too rapid precipitation release from the lowest

clouds, including fog.

In the following, we present a 24-day sensitivity ex-

periment during a cold winter period. The reference

experiment and a sensitivity experiment, with the above

outlined modifications in the microphysics scheme, are

verified against cloud-base observations from 38 Swed-

ish automatic stations (Fig. 2). First, the frequency bias

(definition see section 4) for different cloud-base classes

shows that the lowest cloud base (including fog) is too

frequent in the reference version. This is also the case for

the second highest cloud class (1500–4000-m height),

which is mostly a secondary effect of the under-

prediction of low clouds. The modified version has a

frequency bias closer to one, although there are still

some systematic errors. Other experiments showed that

all three of the ICE3 modifications contribute to the

reduction of frequency bias. Furthermore, they showed

that accounting for the lower optical thickness of ice-

phase clouds is especially important for the reduction of

(ice) fog. The amount of cirrus clouds is generally lower
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with the modified version, which seems to be better

from a subjective perspective. It is difficult to objectively

verify this, since the treatment of thin cirrus is doubtful,

and the automatic stations are only able to detect clouds

up to 7.5 km.

The equitable threat scores (defined in section 4) for

different thresholds of cloud base show that the modi-

fications of the microphysics scheme improve the skill in

all cloud-base thresholds (Fig. 2b). In summer there is

only a small and nearly neutral effect of the updates (not

shown). A positive side effect is that the overprediction

of very high precipitation amounts (seen mostly in

summer) is reduced. The reason for this is not obvious,

but the separation of liquid-phase processes from the

slower ice-phase processes may slow down the speed of

the modeled total precipitation production.

c. The surface model

Interactive atmosphere–surface and surface–soil

processes are described by the Surface Externaliseé
(SURFEX) model (Masson et al. 2013). SURFEX in-

cludes routines designed to simulate the exchange of

energy and water between the atmosphere and four

surface types (tiles): land, ocean, inland water, and town.

The fluxes computed by SURFEX at the atmosphere–

surface interface serve as the lower boundary conditions

for the atmospheric part of the model. All surface pro-

cesses are treated as one-dimensional vertical processes,

with different options for specifying the required degree

of physical complexity.

The land surface parameters are defined by the

ECOCLIMAP 1-km resolution global database (Masson

et al. 2003), which initializes the soil–vegetation–

atmosphere transfer schemes in the surface model. In

the initial phase of operating a convective-scale weather

prediction system, the ECOCLIMAP1 database (Masson

et al. 2003) was used and replaced in May 2013 by the

new version, ECOCLIMAP2 (Faroux et al. 2013). The

introduction of the ECOCLIMAP2 physiography had a

significant impact on themodel’s performance. Themain

motivation for changing to ECOCLIMAP2 was in ad-

dressing the problematic features of ECOCLIMAP1 in

some parts of the model domain. For example, the sur-

face roughness was too low, which led to too high wind

speeds in Trøndelag, in the middle of Norway. Also, in

ECOCLIMAP1 large parts of southern Norway are

given, by mistake, the surface type ‘‘permanent snow.’’

ECOCLIMAP2 gives more realistic roughness values in

Trøndelag and a more realistic extent of the permanent

snow in themodel domain. Furthermore, there is a general

increase and modification of the seasonal cycle in the leaf

area index (LAI) in the new ECOCLIMAP2 version. The

LAI directly impacts the surface roughness in the surface

boundary layer modeling (SBL) within SURFEX.

The SBL scheme is a one-dimensional prognostic

turbulence model. The exchange of momentum and

heat with the surface is a function of the surface

roughness, on land tiles calculated from the LAI and

vegetation height. Additional ‘‘canopy drag’’ is acti-

vated, increasing the drag within the SBL as a function

of LAI and vegetation fraction, and thereby reducing

thewind speed. It is possible to also add orographic drag,

but that option is not used in the current setup of

AROME-MetCoOp.

Donier et al. (2012) realized that the most impor-

tant effect of the change from ECOCLIMAP1 to

ECOCLIMAP2, when evaluating the performance of

AROME-France, was induced by an increased seasonal

FIG. 2. A 24-day sensitivity experiment with modifications in the microphysics scheme as described in the text. The reference exper-

iment (red) and the modified version (green) are shown. (a) The frequency bias for different cloud-base classes. A class is defined by

a range of heights (m) above the surface, e.g., the highest cloud-base class also includes clear sky and clouds above 7500m. The ideal

frequency bias equal to one is indicated by a solid line. (b) The ETSs for different thresholds of cloud-base heights (m).
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cycle of LAI. Our findings are consistent with those of

Météo-France in that it had a strong impact on the

forecast skills of 2-m relative humidity RH2m, as well

as T2m. Specifically, summer nighttime T2m was over-

estimated and RH2m underestimated. It was found that

the reason for that was too stable stratification in some

situations. To prevent too stable stratification, the maxi-

mum Richardson number Rimax was reduced from 0.2 to

0.0, leading to significantly improved forecast skill (see

also Donier et al. 2012).

In areaswith vegetation, the change fromECOCLIMAP1

to ECOCLIMAP2 also affected the wind speed and led

to an underestimation of U10m. Sensitivity experiments

have shown that a reduction in the tuning coefficient of

the canopy drag (from 0.05 to 0.01) leads tomore realistic

wind speeds in vegetation-covered areas, and moreover,

improved the performance in stable summer nights with

respect to T2m and RH2m. This is illustrated by a sensi-

tivity experiment, where the canopy drag andRichardson

number are reduced, over a 15-day period during summer

2011 (Fig. 3). The forecasts ofT2m andU10m are evaluated

against observations from Norwegian and Swedish syn-

optic stations. The mean errors of the T2m and U10m

forecasts are significantly reduced, consistent with the

preceding explanation.

3. Data assimilation

a. Surface data assimilation

The surface analysis is performed by Code d’Analyze

Nécessaire à ARPEGE pour ses Rejets et son Initiali-

zation (CANARI; Taillefer 2002), using conventional

synoptic observations of T2m, RH2m, and snow depth

from synoptic and climatological stations (Fig. 4). The

analysis method is optimal interpolation (OI), in which

surface temperature, soil temperature, and moisture

fields are updated, based on T2m and RH2m analysis in-

crements. In Fig. 5a the network of surface observation

stations in the MetCoOp area are visualized.

Snow cover ismodeled by a one-layer schemewith three

prognostic variables: snow water equivalent (SWE), snow

density, and snow albedo. The conversion of snow-depth

observations to SWE in CANARI is based on climato-

logical monthly mean snow density values ranging from

143kgm23 (in autumn) to 312kgm23 (in spring). The

influence of the observations is a function of both hori-

zontal and vertical distance and is adapted to the Nordic

network of snow-depth observations (Homleid and Killie

2013). Most of the snow-depth observations are only

available at 0600 or 1800 UTC, and accordingly the

snow analysis is only performed twice daily with the first

guess from a 3-h forecast from the previous cycle. The

assimilation of snow depths leads to an improvement in

the simulation of the snow depth, especially during the

melting season in spring (Homleid and Killie 2013).

The sea surface temperature (SST) is taken from the

ECMWF-IFS, which, in turn, provides a product based

on the Met Office’s Operational Sea Surface Tempera-

ture and Sea Ice Analysis (OSTIA; Donlon et al. 2012).

Sea ice concentrations are obtained from the Ocean and

Sea Ice Satellite Application Facilities (OSI-SAF) from

MET-Norway. Also, the surface temperature over sea ice

is taken from the ECMWF-IFS and remains unchanged

throughout the forecast. There are ongoing efforts to

improve the SST and sea ice concentration representa-

tions in the model and, further, to provide for coupled

atmosphere–ocean forecasts with a one-dimensional

ocean model approach (Brossier et al. 2009).

FIG. 3. A 14-day sensitivity experiment with modifications in the

surface model (reduced canopy drag and Richardson number), as

described in the text. The reference experiment (blue) and the

modified version (red) are shown. The mean errors for (a) 2-m

temperature and (b) 10-m wind speed are shown.
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b. Spectral mixing

The upper-air forecast analysis is obtained by mixing

in large-scale information (LSMIX) of the ECMWF-IFS

and by three-dimensional variational (3DVAR) data

assimilation of observations into the model background

(Fig. 4). The model background is a 3-h forecast from

the previous cycle. With LSMIX, large-scale informa-

tion from the host model is transferred, in a simpli-

fied form, into the limited area high-resolution model

(Guidard and Fischer 2008; Dahlgren and Gustafsson

2012). For all spectral control variables the ECMWF-IFS

forecast xh valid at the analysis time is mixed in the model

background xb by

~x
b
(m, n, l)5w(m, n, l) � x

h
(m, n, l)

1 [12w(m, n, l)] � x
b
(m,n, l). (1)

where (m, n) refer to the horizontal wavenumbers, l is

the vertical model level, and w(m, n, l) is the weighting

function. A detailed description of LSMIX is given in

the appendix. In principle the LSMIX approach is sim-

ilar to the spectral nudging technique used for dynami-

cal downscaling of global climate model output (Von

Storch et al. 2000). In the present AROME-MetCoOp

operational system, the weighting function is separated

in w(m, n, l)5 u(m, n)y(l), where the vertical weighting

function y(l) is a simple polynomial and the horizontal

weighting function u(m, n) is described by a step func-

tion. With an improved representation of the weighting

FIG. 4. Sketch of the surface and upper-air data assimilations.

Upper-air variables are updated by spectral mixing of the host

model information (LSMIX) and performing a 3DVAR data as-

similation of observations (synoptic stations, drifting buoys, air-

crafts, radiosondes, GNSS ZTD, radar, and satellites). The surface

fields are updated by OI (CANARI). Furthermore, the surface

processes are simulated by SURFEX.

FIG. 5. Observational data used in the 3DVARdata assimilation.

(a) Snapshot (1200 UTC 2 Sep 2015) of conventional observations,

(b) daily cycle of ATOVS observations (2 Sep 2015), and (c) all

radar reflectivity observations on 2 Sep 2015.
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function in the form of an error covariance matrix,

LSMIX would be equivalent to the Jk term formulation

(Dahlgren and Gustafsson 2012). This equality is shown

in the appendix. The LSMIX approach has a significant

positive impact on forecasts of upper-air temperature

(verified against radiosondes) and on mean sea level

pressure (Dahlgren 2013).

c. Upper-air data assimilation

In the AROME upper-air 3DVAR data assimilation

system (Fig. 4), the background-error covariances use a

multivariate formulation based on the forecast errors of

the control variables (i.e., vorticity, divergence, tem-

perature, surface pressure and specific humidity errors)

(Berre 2000). The background error covariance matrix

(B matrix) is computed with the assumption of hori-

zontal spatial homogeneity and isotropy. These as-

sumptions allow for a number of simplifications in the

representation of the B matrix and the minimization

procedure of the cost function (Berre 2000). In the op-

erational model setup we use a ‘‘climatological’’ repre-

sentation of the B matrix and do not take into account

any time dependence (Brousseau et al. 2012) nor

heterogeneous information in space (Montmerle and

Berre 2010).

At the current stage, conventional observations from

surface synoptic stations1 (SYNOP), drifting buoys

(DRIBU), aircrafts (AIREP), and radiosondes

(TEMP) are used in the 3DVAR upper-air data as-

similation system (Fig. 5a). Furthermore, satellite ra-

diance observations from three Advanced TIROS

Operational Vertical Sounders (ATOVS), Global

Navigation Satellite System (GNSS) zenith total delay

(ZTD) observations, and radar reflectivity from the

Norwegian and Swedish radar networks are assimi-

lated. In the following, we briefly discuss the assimila-

tion strategies for GNSS ZTD, ATOVS, and radar

reflectivity observations.

From ATOVS instruments, the Advanced Micro-

wave Sounding Unit (AMSU-A andAMSU-B) and the

Microwave Humidity Sounder (MHS) data are pro-

cessed at their full resolution (Randriamampianina

2006). The different biases of the satellite data are

corrected by using an adaptive variational scheme

(Dee 2005). The coefficients for the bias correction are

aggregated daily for each assimilation time and are

compared to the continuous cycling updates of the

global model forecast system (Randriamampianina

et al. 2011). The data are thinned with an average

resolution of 80 km. An example of the data coverage

for all cycles for a specific day is shown in Fig. 5b.

The GNSS ZTD provides information of columnar

water vapor and results are obtained through the Network

of European Meteorological Services (EUMETNET)

global positioning system (GPS) Water Vapor Program,

which is a collaborative effort between the European

geodetic community and several European national

meteorological institutes. At present we make use of

GNSS ZTD observations from the Met Office and the

Royal Meteorological Institute of Belgium processing

centers, who provide around 20 stations for our domain

(Fig. 5a). In the near future, it is planned to have access

to around 600 stations by a data-processing infrastruc-

ture. A novel aspect of ourGNSSZTD is the operational

use of a variational bias correction to adaptively handle

biases in the GNSS ZTD observations. For a detailed

description and analysis, we refer to Sánchez Arriola

et al. (2016).

Quality controlled radar reflectivity results from the

Norwegian and Swedish radar network are assimilated

(Fig. 5c). The reflectivity data are filtered to a resolution

of 15km by selecting one-dimensional reflectivity profiles

within 15km 3 15km boxes. Then, a 1D Bayesian esti-

mate of a relative humidity profile is retrieved from the

reflectivity and, subsequently, assimilated within the

3DVAR approach following the strategies described in

Caumont et al. (2010) and Wattrelot et al. (2014). Note

that the quality control process of the radar reflectivity

data distinguishes between areas of no rain and no ob-

servations. Thus, observations of no rain are also con-

sidered in the data assimilation system. The impact of

radar data assimilation on the forecast of RH2m is illus-

trated in Fig. 6. It is a 2-week experiment that took place

during May 2015, and the impact of the assimilation of

reflectivity data from the entire Norwegian and Swedish

radar network is tested. The result illustrates a small

positive impact on the forecast of relative humidity on

forecast lengths up to 24h. Verification of relative hu-

midity against radiosonde observations shows a similarly

small improvement below 500-hPa height, in addition

to a forecast degradation at 700 hPa (not shown). The

latter is not understood, so far, and remains part of our

ongoing work.

4. Evaluation of the model

a. Evolution of the model system

There has been an active development of the

HARMONIE-AROME model in recent years within

the HIRLAM consortium. At the Norwegian Meteo-

rological Institute the HARMONIE-AROME model

has been in use since May 2011, and a timeline of model

1Only surface pressure is used in the upper-air data assimilation

system.
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changes and updates is illustrated by the monthly stan-

dard deviation of the error and bias of temperature

assessed for 154 Norwegian stations (Fig. 7). Note that

the model changes and different versions are not re-

ferring solely to modifications done by the Norwegian

MET service, but are also the result of combined efforts

withinHIRLAM.TheAROMEmodel was running in an

experimental mode (Harmonie2.5), which in November

2012 became theAROME-Norwaymodel. Thosemodels

were without 3DVAR data assimilation, based on

AROME physics (Seity et al. 2011), and operated on sim-

ilar domains as AROME-MetCoOp. In June 2013, the

AROME-Norway model (based on HARMONIE-

AROME version 37h1.2) became operational and has

been used as the main weather forecast model for Nor-

way from October of the same year. Major modifications

and improvements were performed in 2013, when the

ECOCLIMAP1 map was replaced by ECOCLIMAP2.

As described in section 2c, this resulted in model per-

formance issues. The required adjustments to the surface

drag and the maximum Richardson number followed in

November 2013. In March 2014 the AROME-MetCoOp

model (based onHARMONIE-AROMEversion 38h1.1)

became operational. The microphysics were modified,

as described in section 2b, during December 2014

(HARMONIE-AROME version 38h1.2).

The verification of T2m of almost 4yr shows a reduction

in the standard deviation error for the ECMWF-IFS and

the AROME model systems during winter. Thus, in the

second half of the time series, the evaluation of the

ECMWF-IFS andAROME-MetCoOpmodels shows less

variability in between seasons. The temperature mean

error developments differ in time. AROME-MetCoOp

has a warm winter bias in 2011 and 2012, which changes

to a cold winter bias in the following years, after the

change to ECOCLIMAP2, which reduced the surface

drag and changed the maximum Richardson number.

Furthermore, in the first half of the time series ECMWF-

IFS always has slightly smaller or equal standard de-

viations of error compared with AROME-MetCoOp,

while the results are of similar size in the second half.

During the entire period AROME-MetCoOp has fewer

systematic deviations than ECMWF-IFS.

b. One-year evaluation

The performance of the AROME-MetCoOpmodel is

presented over a period of 12 months ranging from

1 September 2014 to 31 August 2015. Quality controlled

synoptic observations of 10-m wind speed U10m, 2-m

temperature T2m, and 12-h accumulated precipitation

RR12 from the Norwegian and Swedish observation

network are used for the evaluation. The forecast skill of

the AROME-MetCoOpmodel is compared against that

of the global ECMWF-IFS with a specific focus on lead

times ranging from 6 to 30h.

The mean absolute error (MAE) and the corre-

sponding skill score sMAE, defined as

s
MAE

5 12
MAE

AROME

MAE
ECMWF

, (2)

are used to evaluate the forecast skill of precipitation,

temperature, and wind (Figs. 8 and 9). Note that sMAE is

only shown for the temperature forecast evaluation. The

forecasts of precipitation and wind are further assessed

(Fig. 10) by using the equitable threat score (ETS),

ETS5
a2 a

r

a1 b1 c2 a
r

and (3)

a
r
5 (a1b)(a1 c)/N , (4)

and the bias frequency (BF),

BF5
a1 b

a1 c
. (5)

Here, N is the length of the sample (N5 a1 b1 c1 d)

and the events a, b, c, and d are given in a contingency

table (Table 1).

1) TEMPERATURE

The largest improvements in temperature forecasts,

where sMAE values are larger than 0.3, are seen in Nor-

way, and in particular in the mountainous regions

(Fig. 8). There, the main contribution to the improved

forecast skill is due to better resolution of topography in

FIG. 6. The 14-day data-denial experiments without (red) and

with (green) data assimilation of radar reflectivities from the

Norwegian and Swedish radar networks. The impact on 2-m rela-

tive humidity observations is shown. The y axis represents the root-

mean-square error and bias (for red and green curves) and shown

in gray is the number of cases in the verification process. The x axis

represents the lead time (h) of the forecast.

616 WEATHER AND FORECAST ING VOLUME 32



www.manaraa.com

the AROME-MetCoOp model compared with the

ECMWF-IFS.2 The AROME-MetCoOp resolution is

sufficient to resolve to a great degree the Norwegian

mountains and fjords. In the Norwegian coastal areas

and in the flat-topography regions in Sweden improve-

ments from using a higher-resolution model are present,

but more modest. Generally, the ECMWF-IFS model

has a negative temperature bias in winter over the entire

domain (see also Fig. 7b). The AROME-MetCoOp

model is capable of reducing this bias, except for in

some parts in northern Sweden, where the sMAE score is

around zero year-round.

In the temperature MAE a characteristic seasonal cy-

cle with MAE values of more than 2.58 in wintertime is

present for the ECMWF-IFS (Fig. 9a; see also Fig. 7b).

This seasonality is significantly reduced in the AROME-

MetCoOp model to values smaller than 1.88 in the Nor-

wegian area. The increased errors during winter can be

partly explained by the complexity of temperature fore-

casting within cold winter surface and local inversion

situations, compared with summer conditions where the

sun is the dominant driver of the near-surface tempera-

ture. In Sweden, the temperatureMAE is smaller than in

Norway and the two models are almost identical, except

for during winter when AROME-MetCoOp has a

smaller temperature bias than ECMWF-IFS. Note that

during December 2014 the model version was updated,

which included the improvements in the microphysic

scheme described in section 2b and effectively reduced

the winter temperature bias.

2) PRECIPITATION

The MAE for RR12 is improved mainly in Norway,

where orographically forced precipitation is the dominant

FIG. 7. The (a) standard deviation error and (b) mean error (K) of 2-m temperature com-

puted for 154 Norwegian synoptic stations. The evaluation ranges from June 2011 to August

2015. It includes the ECMWF-IFS for the whole time period, and three high-resolution

AROMEmodel setups usedwithin the last 4 yr: Harmonie2.5,AROME-Norway, andAROME-

MetCoOp. Major milestones in the establishment of AROME as an operational weather

prediction model are indicated by letters A–D, where A is the change from ECOCLIMAP1 to

ECOCLIMAP2 (27 May 2013), B is the reduced drag and change of maximum Richardson

number (4Nov 2013), C is whenAROME-MetCoOpbecame operational (12Mar 2014), andD

is the change from cy38h1.1 to cy38h1.2 (8 Dec 2014).

2 See also Figs. 1b and 1c, where the topographies of the two

model systems are shown for a mountainous area in Norway.
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mechanism. There, the high resolution of the AROME-

MetCoOp model has a positive impact. Over Sweden,

where convective precipitation is a dominant mechanism,

the MAE values are similar between the two models

(Fig. 9b). The precise forecast of convective cells is

challenging, and thus, a point verification method is

problematic for those small-scale features. A well-

forecasted precipitation amount, but mislocated by a

few kilometers, can lead to a ‘‘double penalty’’ and thus

to a reduced skill score. Hence, we will use a spatial

verification method, the fractional Brier skill score

(FBSS; Roberts and Lean 2008), tomonitor the capability

of the two different models to predict the probability of

precipitation over certain threshold values and for dif-

ferent area sizes. Often radar information is used for

FBSS analysis, but since our current radar products are

not accurate enough, we analyzed a dense network of rain

gauges within the MetCoOp domain for a period of

9 months (October 2014–June 2015) and considered

forecast lengths from 6 to 30h. The reference forecast is

the observed frequency of occurrence of precipitation

exceeding the different thresholds.

For FBSS calculations the model domain is subdivided

into squares of varying size, measured in degree latitude

and longitude (18 is’ 111km). Only squares with at least

three observations are considered in the analysis. In

Fig. 11 the FBSS values for different precipitation

thresholds and square sizes are shown. For all thresholds

and square sizes, FBSS values for AROME-MetCoOp

are positive and larger than for the ECMWF-IFS. Most

apparent are the differences between the two models for

small thresholds (0.1mm) and for large thresholds (20

and 35mm). Thus, the spatial verification implies that

the occurrence of strong precipitation events is generally

better captured with the higher-resolution model. A

consistent, but less significant, result is obtained for the

ETS in Norway for small (,5mm) and large (.15mm)

precipitation (Fig. 10). In the range between 5 and

15mm in Norway and in general, for precipitation in

Sweden, the ETS score is slightly larger for ECMWF-

IFS than for AROME-MetCoOp. Compared with the

results of the FBSS score, this illustrates the double-

penalty issue when using point verification for high-

resolution models in areas where orographically forced

precipitation is less dominant.

The analysis of the BF also suggests that in Sweden

the AROME-MetCoOp model is able to simulate the

precipitation amounts more realistically than the

ECMWF-IFS. Precipitation events smaller than ap-

proximately 10mm have a BF larger than 1, which

means that both models overestimate the occurrence

of those events. In particular, ECMWF-IFS over

Norway shows large BF values of up to 1.5. For pre-

cipitation amounts larger than 15mm, the ECMWF-

IFS has values around 0.5 over Norway and, thus, only

50% of those events are forecasted. For the Swedish

region the AROME-MetCoOp has a BF close to 1 and

for the ECMWF-IFS underestimates the frequency of

large precipitation events, shown by BF values of

around 0.5.

3) WIND

AROME-MetCoOp has in the entire model domain a

smallerMAE for wind than does ECMWF-IFS (Fig. 9c).

There is only a 2-month period in winter when the

ECMWF-IFS shows smaller MAE values for the

Swedish area. Furthermore, the ETS and BF values for

wind confirm the good performance of the AROME-

MetCoOpmodel for all wind speeds (Fig. 10). ECMWF-

IFS performance is best in the range of winds speeds

from about 4 to 10m s21 with ETS values of around 0.4.

For wind speeds larger than 10m s21 the BF is smaller

than 0.5 and, thus, the global forecasting system misses

more than 50% of those strong wind events. Instead,

AROME-MetCoOp shows, for wind speeds in the range

of 3–13m s21, ETS values larger than 0.4 and BF values

of around 1. The BF drops below 0.5 for wind speeds

larger than around 18ms21.

In summary, we find that the AROME-MetCoOp

model improves wind, temperature, and precipitation

forecasts compared with the ECMWF-IFS. In the areas

with complex topography (e.g., the Norwegian moun-

tains) the high-resolution model adds considerable

value to the temperature and wind forecasts. Large wind

FIG. 8. MAE skill score for temperature for forecast lead times

from 6 to 30 h averaged over a 1-yr period from September 2014 to

August 2015.
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speeds and precipitation amounts are also significantly

better simulated by the AROME-MetCoOp model.

5. Extreme weather case studies

a. Summer convective events in southern Sweden

In August 2014 several heavy-precipitation events

occurred across southern Scandinavia. Locally, severe

damage was reported. We will focus on the 24-h period

from 0600 UTC 19 August to 0600 UTC the following

day. During this period southern Sweden experienced

moist southwesterly winds associated with heavy rain

showers and the mean sea level pressure (MSLP) map

(not shown) is dominated by a low pressure center off

the coast of mid-Norway.

The AROME-MetCoOp and ECMWF-IFS fore-

casts of 24-h accumulated precipitation are shown in

Figs. 12a and 12b with maximum values given by

numbers. An area of particularly intense precipitation

associated with a trough is found in both models.

Over a region in southern Norway (Figs. 12c,d), south

of Lake Vaenern and 20 km north of Gothenburg,

more than 80mm of rain within 12 h was reported from

rain gauge stations. Several stations measured more

than 100mm over the 24-h period (observed pre-

cipitation amounts are marked by colored squares in

Figs. 12c–e). In the AROME-MetCoOp forecast the

area of intense precipitation is considerably larger and

extends much further inland, compared with the fore-

cast of ECMWF-IFS, which has its largest precipi-

tation amounts along the coast. Furthermore, local

maxima of convective precipitation to the north of

Lake Vaenern were forecasted byAROME-MetCoOp

only. In general, all maxima are higher in the Arome-

MetCoOp forecasts.

The forecasts from AROME-MetCoOp are in better

agreement with the rain gauge measurements and

also with the radar products for the areas with large

precipitation amounts. Both the extension of the

FIG. 9. Monthly averages of MAE subdivided into the Norwegian (red) and Swedish (blue)

parts of the domain. MAEs are shown for the period from September 2014 to August 2015 for

the ECMWF-IFS (dashed lines) and AROME-MetCoOp (solid lines) model forecasts with

lead times from 6 to 24 h. The errors in (a) 2-m temperature, (b) 12-h accumulated pre-

cipitation, and (c) 10-m wind are assessed.
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maximum area inland and the smaller amounts along

the coast from this model is in better agreement with

the measurements. The aforementioned small-scale

convective cells north of Lake Vaenern are visible in

the radar product and are indicated by some high

values observed at rain gauges. The estimation given by

the radar product should, however, be interpreted with

some care as the radar beam is about 6 km above the

ground at this distance from the radar site. When

looking more closely, it becomes evident that although

the AROME-MetCoOp model captures the locations

of some areas of heavy precipitation better, the model

still underestimates the observed maxima. Some areas

with large precipitation amounts are missing in the

forecasts, and peak values are not exactly collocated

with the observed results. Thus, this suggests that for

convective precipitation the use of an ensemble pre-

diction system for forecasting rainfall probabilities

could be advantageous.

b. Strong rainfall in western Norway

At the end of October 2014, multiday heavy rainfall in

the western parts of Norway caused severe flooding and

led to significant infrastructure damage. The hourly

FIG. 10. (left) ETS and (right) BF for (a),(b) 12-h accumulated precipitation and (c),(d) wind speed computed for

the period from September 2014 to August 2015. The computation is subdivided into the Norwegian (red) and

Swedish (blue) parts of the domain and forecasts from the ECMWF-IFS (dashed lines) and AROME-MetCoOp

(solid lines) models are assessed.

TABLE 1. Contingency table used for the calculation of ETS.

Observed yes Observed no

Forecasted yes a b

Forecasted no c d
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precipitation rates were not extreme; however, the

continuous strong rainfall over several days caused se-

vere flooding and landslides. The weather situation

originally arose from the strong Tropical Cyclone

Gonzalo in the Caribbean Sea, which developed 12 Oc-

tober and intensified for several days into a major hur-

ricane (category 4), being the strongest since 2011. The

remaining extratropical storm followed a storm track

toward the coastline of western Norway. This low

pressure system with warm and humid air formed the

basis for the strong precipitation during 26–28 October,

with peak values on 28 October.

In general, the weather pattern and timing of the

most extreme precipitation period was well predicted

by the ECMWF-IFS large-scale model. However, for a

prediction of floods and landslides the localization and

the amount of precipitation are crucial. We compare

48-hourly accumulated precipitation obtained from

the rain gauge network and forecasts of the ECMWF-

IFS and AROME-MetCoOp models (Fig. 13). The

higher-resolution AROME-MetCoOp model shows

an improved representation of the localized rainfall

location and intensity. In the coarser-resolution ECMWF-

IFS model the locations with high precipitation rates

(i.e., larger than 50mm) are generally underestimated.

Instead, the AROME-MetCoOp model captures the

amount and location of large precipitation events rea-

sonably well. Validation of an individual time series

shows the well-defined timing of the most extreme

precipitation by both models, and further, the ability

of AROME-MetCoOp to capture the large precipita-

tion amounts realistically (Fig. 14). The main reason

for a more realistic forecast of AROME-MetCoOp

compared with the large-scale ECMWF-IFS model is

the improved representation of orographic forcing (see

also Figs. 1b,c).

c. Storm along the Norwegian west coast

In the beginning of February 2015 a deep low pres-

sure system developed in the Norwegian Sea accom-

panied by strong winds as the primary threat. The

potential of an extreme wind event was well forecasted

FIG. 11. FBSS analysis for 24-h accumulated precipitation. The square size is given along the x axis and FBSS along the y axis. Scores are

shown for various precipitation thresholds [0.1, 1, 5, 10, 20, and 35mm (24 h)21] for the ECMWF-IFS (red lines) and AROME-MetCoOP

(green lines) systems. The validation period is from October 2014 to June 2015.
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by ECMWF-IFS with quite consistent forecasts of where

landfall of the low pressure system would take place.

In the morning of 7 February the storm center hit the

northern Norwegian coast (Fig. 15), and the pressure

field generated a strong northwesterly flow perpendic-

ular to the Norwegian coast. This wind direction in

combination with strong wind conditions leads to strong

winds and gusts in the Norwegian fjords and farther in-

land. Even though warnings were issued early, major

damage to infrastructure was reported.

Both the ECMWF-IFS and AROME-MetCoOp fore-

casts showed good agreement with the model analysis for

MSLP, indicating a well-forecasted low pressure system

on the synoptic scale. However, with increasing lead

times of the forecasts there are differences in the exact

locations of the strongest winds and in the magnitude of

the wind speeds (not shown). The most striking differ-

ence between AROME-MetCoOp and ECMWF-IFS is

in the higher wind speeds in AROME-MetCoOp. It is a

known deficiency of AROME-MetCoOp that winds are

too high in extreme situations. However, for this case

data were available to confirm such behavior. Over land

areas scatterplots show a significantly better level of

performance for AROME-MetCoOp than ECMWF-IFS

FIG. 12. The 24-h accumulated precipitation (mm) at 0600 UTC 20 Aug 2014 from (a) AROME-MetCoOp and

(b) ECMWF-IFS forecasts initialized at 0000 UTC 19 Aug 2014. Black numbers indicate the maxima of the sim-

ulated precipitation. (c),(d)As in (a),(b), but for a small area in the southern part of the domain (southern Sweden).

(e) The radar precipitation product from the Norwegian radar located at Hurum. The squares in (c), (d), and

(e) highlight the measurements from the Swedish rain gauge network and are color coded as follows: white, 20–40;

gray, 40–100; and black, $100mm (24 h)21.
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(Fig. 16). While AROME-MetCoOp scatters along the

diagonal, the ECMWF-IFS wind forecasts are under-

estimated at almost all observation points. On average, in

ECMWF-IFS the windmagnitude is underestimated and,

generally, the system is not able to capture high wind

speeds. AROME-MetCoOp shows much better agree-

ment and is able to forecast high wind speeds. However,

there is significant scatter for both models, which

indicates that the forecast skill with respect to local de-

tails has deficiencies.

6. Summary and outlook

In the present paper we describe the operational us-

age of a high-resolution, nonhydrostatic, convective-

scale weather prediction model for the Nordic regions.

FIG. 13. The 48-h accumulated precipitation (mm) at 0600 UTC 30 Oct 2014 from (a) AROME-MetCoOp and

(b) ECMWF-IFS forecasts initialized at 0000 UTC 28 Oct 2014. Black numbers indicate the maxima of the sim-

ulated precipitation. (c),(d) As in (a),(b), but for a smaller area over southern Norway. The squares in (c) and

(d) highlight the measurements from the Norwegian rain gauge network and are color coded as follows: white, 100–

150; gray, 150–200; and black, $200mm (48 h)21.
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The convective-scale AROME-MetCoOp model has

been in operation since March 2014 and is tuned and

adapted to the specifications of our Nordic model do-

main. Modifications are made to the surface boundary

layer parameterization as a result of the introduction of

the new physiography ECOCLIMAP2 product. Fur-

thermore, the microphysics needed modifications be-

cause of the sparsity of supercooled liquid water clouds

in the case of moderate cold weather and too many low-

level ice clouds in the case of very cold weather.

Several observation types are assimilated in the sur-

face and upper-air atmospheric model. In the atmo-

sphere we use a spectral mixing scheme, which mixes

large-scale information of the ECMWF-IFS with the

AROME-MetCoOp model’s background. The spectral

nudging is followed by a 3DVAR data assimilation

scheme using climatological model error covariances.

Conventional observations, such as data from SYNOP

stations, drifting buoys, radiosondes, and airplanes to-

gether with ATOVS satellite observations are included

in the 3DVARminimization. In addition, two new high-

resolution observations, radar reflectivity from the

Norwegian and Swedish radar network and ground-

based GNSS ZTD observations, are included.

The 1-yr model verification and comparison against

the ECMWF-IFS highlights the strengths of the high-

resolution model. ECMWF-IFS has issues in forecasting

precipitation (RR12) values larger than 15mm and wind

speeds larger than 10m s21, and it is found that

AROME-MetCoOp clearly adds value to those forecast

parameters. Also for temperature, the high resolution of

the AROME-MetCoOp model considerably improves

the forecasts in the complex topography of the Norwe-

gian mountains, and the cold temperature bias of the

ECMWF-IFS model is reduced by the AROME-

MetCoOP model.

Since the operational use of AROME-MetCoOp be-

gan, several extreme events connected to strong winds

or precipitation occurred. We chose three events for this

study. The first event is a small-scale convective pre-

cipitation event in southern Sweden, where large

amounts of precipitation led to local flooding and

damage. The second case is a large-scale precipitation

event in the Norwegian mountains, which resulted in

heavy flooding in some canyons. And the third event

represents a storm that occurred along the northern

Norwegian coast with very strong winds as the main

threat to local communities and industries. All three

events were well forecasted by AROME-MetCoOp,

and a timely information flow was initiated to warn lo-

cal authorities and the public.

The two events along the Norwegian west coast

(storm and large-scale precipitation) were embedded

in a large-scale atmospheric flow system and, thus, were

generally well forecasted by the ECMWF-IFS model.

However, the improved representation of small-scale

processes and surface parameters enabled AROME-

MetCoOp forecasts to improve the magnitudes and lo-

cations of the maximum wind speed and precipitation.

This information is of considerable importance when

warnings are being issued by themeteorological services

on severe weather situations and for further use in

downstream impact models (e.g., hydrological models).

Because of the small-scale characteristics of the con-

vective processes, the strong convective precipitation

event in southern Sweden was not captured by the

ECMWF-IFS model at all, but was reasonably well

forecasted by AROME-MetCoOp. However, even

though the AROME-MetCoOp resolves convective

processes and produces consistent magnitudes of pre-

cipitation, the forecasting of the exact location is not

possible. Presumably, the assimilation of more high-

resolution observations will improve the model fore-

casts in this respect (Chang et al. 2014). Furthermore,

the stochastic character and fast development of con-

vective cells emphasizes the need to use an ensemble

prediction system rather than deterministic forecasts

(Schwartz et al. 2015). Indeed, the latter is envisaged for

the year 2016, when a suite of 10 AROME-MetCoOp

ensemble members will be in operation.

In the near future it is planned to include more

observations in the data assimilation system, such

as satellite observations from the Infrared Atmo-

spheric Sounding Interferometer (IASI), the Advanced

FIG. 14. Time series of 12-h accumulated precipitation obser-

vations and forecasts [mm (12 h)21] at Kvamskogen, Norway. The

observation site is in the Norwegian mountains and is visible in

Fig. 13c, in the center of the number 307, which displays the local

maximum of forecasted precipitation. The observations are at

0600 and 1800 UTC (black). The 18-h forecasts from AROME-

MetCoOp (blue) and ECMWF-IFS (green) initialized at 0000 and

1200 UTC are used.
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Scatterometer (ASCAT; Valkonen et al. 2016), and

atmospheric motion vectors (AMVs), radar Doppler

winds, radar data from the radar networks of Denmark

and Finland, and a considerably increased amount

(about 600) of GNSS ZTD observations. Also, the use

of sea surface temperature (SST) from high-resolution

ocean models is progressing, and it is expected that

soon, for the Baltic Sea, the SST will be prescribed by

an operational ocean model. Sensitivity experiments

show that this has a positive impact, specifically for

weather forecasts along the coast. Concerning fore-

casting issues in higher-latitude regions, developments

in the parameterization of shallow convection are on-

going and a more advanced three-layer snow scheme is

currently being tested.

The forecasting system is currently operated as a co-

operative venture between the Norwegian and Swedish

weather services (MetCoOp). This cooperation between

two national weather services is unique and will be

further expanded in the future with the NORDNWP

FIG. 15. Color-contoured wind speed (m s21) and black contour lines for MSLP (hPa) at 0800 UTC 7 Feb 2015

from (a) AROME-MetCoOp and (b) ECMWF-IFS forecasts initialized at 0000 UTC 7 Feb 2015. Black numbers

indicateMSLP. (c),(d)As in (a),(b), but for a smaller area over westernNorway.White numbers indicatemaximum

wind speeds. Black dots and numbers indicate observed wind speeds.
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cooperation project, where the national meteorologi-

cal services of the five Nordic countries, Denmark,

Finland, Iceland, Norway, and Sweden, are aiming for

the common production of numerical weather pre-

diction. The NORDNWP project was initiated in 2015,

and it is planned to operate a common model suite by

the year 2020 on a joint high-performance computing

infrastructure.
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APPENDIX

Spectral Mixing of Large-Scale Information

As a first step in the data assimilation procedure, the

large-scale information from the host model is mixed into

the model background. The control variables of the host

model xh are mixed into the model background xb by

~x
b
(m,n, l)5w(m,n, l) � x

h
(m,n, l)

1 [12w(m, n, l)] � x
b
(m, n, l). (A1)

The weighting function w(m, n, l) depends on the hor-

izontal wavenumbers (m, n) and vertical levels l and

represents a simple spectral mixing scheme, whose

characteristics are, in general, equivalent to adding a

third term (Jk term) to the cost function (Dahlgren and

Gustafsson 2012):

J(x)5 J
b
(x)1 J

o
(x)1 J

k
(x) . (A2)

The cost function is written in detail as

J(x)5
1

2
(x2 x

b
)TB21(x2 x

b
)1

1

2
(y2Hx)TR21(y2Hx)

1
1

2
(x2 x

h
)TV21(x2 x

h
) ,

(A3)

where the R, B, and Vmatrices represent the observation,

model background error, and host-model background-

error covariances. The optimal solution of x is foundwhere

=J5 0. We assume that ~xb is a combination of the model

background xb and the host model xh and write the cost

function in the form

J(x)5
1

2
(x2 ~x

b
)T ~B21(~x2 ~x

b
)1

1

2
(y2Hx)TR21(y2Hx) .

(A4)

It can then be shown that

~x
b
5V(B1V)21x

b
1B(B1V)21x

h
and (A5)

~B5 (B21 1V21)21 . (A6)

Thus, we can conclude that a 3DVARminimization with

the Jk term is equivalent to a minimization without the Jk
term but with a premixing of the large-scale model in-

formation according to (A5), and using a modified co-

variance matrix [(A6)] for the premixing first-guess ~xb.

FIG. 16. Scatterplots of the mean of the maximum 10-min wind speeds (m s21) for 8 Feb 2015 for observations

obtained from (a) AROME-MetCoOp and (b) ECMWF-IFS for all Norwegian weather stations.
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